Can aluminium resistance and nitrogen utilization of rice be enhanced simultaneously in acidic soils?

Xue Qiang Zhao and Ren Fang Shen

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China, Email rfshen@issas.ac.cn

Abstract

There are many factors limiting plant growth in acidic soils. Aluminium toxicity and ammonium-nitrogen often coexist in acidic soils due to low pH and poor nitrification. Understanding the mechanisms responsible for aluminium-ammonium interaction can help improve agricultural production and maintain ecological stability in acidic soils. The effects of ammonium and nitrate on Al resistance, of aluminium on ammonium uptake, and the correlation between aluminium resistance and nitrogen utilization were investigated here. The results indicated that ammonium enhances aluminium resistance of rice compared with nitrate. Aluminium does not inhibit ammonium uptake of Al-resistant rice cultivar but does that of the Al-sensitive rice cultivar, and Al-resistant rice cultivar exhibits higher ammonium uptake rate under Al stress compared with the Al-sensitive cultivar. Al resistance in rice is positively correlated with ammonium utilization or negatively correlated with nitrate utilization. Based on these results, it is possible to increase aluminium resistance and nitrogen utilization at the same time in acidic soils through the development of Al-resistant and ammonium-prefering rice cultivars and the application of suitable types of nitrogen fertilizers.

Key Words

Ammonium, nitrate, preference, toxicity, indica, japonica.

Introduction

Soil acidity is one of the most important limitations to agricultural production worldwide (Kochian et al. 2004). Approximately 30% of the world’s total land area consists of acidic soils, and as much as 50% of the world’s potentially arable lands are acidic (von Uexküll and Mutert 1995). In China, acidic soils cover about 2.18 million km2, accounting for 22.7% of the total land (Zhao et al. 2002). At soil pH values at or below 5, dissolution of Al-bearing minerals results in toxic aluminium (Al) forms, inhibiting root growth and function, and thus reducing crop yields (Kochian et al. 2005). Except for aluminium toxicity, there are several other factors limiting crop production in acidic soils such as proton toxicity, manganese toxicity, and low phosphorus stress, but nitrogen (N) problems are generally not included in these limiting factors.

N is one of plant essential macronutrients and plays an important role in plant growth. If plants grown in acidic soils can not effectively utilize nitrogen, agricultural production and ecological safety of acidic soils can not be guaranteed even if other limiting factors were overcome. In fact, N utilization of plants and N transformation in acidic soils are apparently different from those in neutral to calcareous soils. Ammonium and nitrate are two main inorganic N forms available for plant uptake in soils. In the field, inorganic nitrogen occurs predominantly as NH$_4^+$ in soils of pH 4.0 to 6.0 and as NO$_3^-$ in soils of pH 6.0 to 8.0 (McGrath and Rorison 1982). Another critical factor for the survival of plants in acidic soils is the presence of NH$_4^+$, which is a predominant N-source, since nitrification is depressed in these soils (Watanabe et al. 1998).

Thus, acidic soils may be dominated chemically not only by Al$^{3+}$ but also by NH$_4^+$, and neutral to calcareous soils, although lacking toxic concentrations of Al$^{3+}$, do have higher concentrations of NO$_3^-$ (Rorison 1985). Therefore, it is of interest and significance to investigate plant Al resistance and N utilization as a whole.

Rice prefers NH$_4^+$ as a major inorganic N-source since NH$_4^+$ is the predominant N species in anaerobic agricultural soils, in particular in paddy fields. In addition, the degree of Al resistance among small cereal crops usually follows the order rice ≥ rye > wheat > barley although genotypic variation also exists in each species (Ma et al. 2002). Our previous results have demonstrated that ammonium can alleviate Al toxicity in rice and reduce Al accumulation in roots compared with nitrate (Zhao et al. 2009). The present study is to further investigate N-Al interaction and the relationship between Al resistance and N utilization in rice, which are expected to provide experimental evidence for the hypothesis that Al resistance and N utilization of rice can be increased at the same time in acidic soils.

© 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World
1 – 6 August 2010, Brisbane, Australia. Published on DVD.
Methods

Plant materials and grown conditions
Two rice cultivars, indica cultivar kasalath (Al-sensitive) and japonica cultivar koshihikari (Al-resistant) (Ma et al. 2002) were used to investigate the effects of N forms on Al resistance and of Al on ammonium uptake. Thirty rice cultivars were used to study the correlation between N utilization and Al resistance. Rice seedlings were cultured in a growth chamber as described previously (Zhao et al. 2009). Al, NH$_4^+$, and NO$_3^-$ were applied as AlCl$_3$·6H$_2$O, NH$_4$Cl, and NaNO$_3$, respectively. Each experiment was conducted with three replicates.

Effects of ammonium and nitrate on Al resistance
Ten-day-old seedlings were treated in a full-strength Kimura B nutrient solution (pH 4.5) containing 1mM N as NH$_4^+$ or NO$_3^-$ without (-Al) or with (+Al) 50 µM Al for 28 days. The pH of the culture solutions was initially adjusted to 4.5 by addition of 0.1 M HCl or NaOH and the solutions were renewed daily.

Ammonium uptake
Twenty eight-day-old seedlings were firstly treated in an N free full-strength Kimura B nutrient solution (pH 4.5) for 24 h, and then in an N free full-strength Kimura B nutrient solution (pH 4.5) without (-Al) or with (+Al) 50 µM Al for another 24 h. The treated rice seedlings (two seedlings each) were placed in a 150-mL black cup containing full-strength Kimura B solution (pH 4.5) of 1 mM NH$_4^+$ for 3 h. The initial and final concentrations of NH$_4^+$ in solution were determined colorimetrically at 610 nm. Transpiration (water loss) was also recorded. At the end of the experiment, the roots were separated and its dry weight was measured. NH$_4^+$ uptake rate was estimated via the depletion of NH$_4^+$ in the absorption solution during the experiments.

Evaluation of Al resistance and nitrogen utilization
Relative root dry weight (root dry weight with ammonium / root dry weight with nitrate X 100%) was used to express ammonium utilization ability of rice cultivars. Root dry weights were measured after different rice cultivars were grown in a full-strength Kimura B nutrient solution (pH 4.5) containing 2 mM NH$_4^+$ or NO$_3^-$ for 24 days. Relative root elongation (root elongation with +Al / root elongation with -Al X 100%) was measured before and after rice seedlings were grown in 0.5 mM CaCl$_2$ solution (pH 4.5) without (-Al) or with 50 µM Al (+Al) for 24 h.

Results

Effects of ammonium and nitrate on Al resistance
After rice seedlings were treated with 50 µM Al in nutrient solutions containing different N forms for 28 days, almost no inhibiting effects of Al on rice growth were observed under ammonium nutrition irrespective of Al-resistant or Al-sensitive cultivar, but huge inhibiting effects of Al on rice growth of two cultivars exhibited under nitrate nutrition (Figure 1).

Corresponding with the appearance of rice seedlings (Figure 1), stronger decrease in shoot and root dry weight by Al treatment was found with nitrate than with ammonium (Figure 2). These results further demonstrated that ammonium can alleviate Al toxicity of rice compared with nitrate, which is consistent with our previous reports (Zhao et al. 2009).
Figure 2. Effects of Al on shoot dry weight (a) and root dry weight (b) of Al-resistant cultivar koshihikari and Al-sensitive cultivar kasalath with different N form supply. Data are means ± SD (n = 3).

Effects of aluminium on ammonium uptake
Pre-treatment with 50 µM Al significantly decreased ammonium uptake of kasalath but not that of koshihikari (Figure 3). When no Al addition, koshihikari showed similar even lower ammonium uptake rate compared with kasalath, but when Al was added, ammonium uptake rate of koshihikari was higher than that of kasalath (Figure 3). These results suggested that Al did not inhibit ammonium uptake of Al-resistant rice cultivar which obtained higher ammonium uptake rate under Al stress.

Correlated relationship between rice Al resistance and N utilization
The correlation analyse indicated that there was a positive correlation between Al resistance and ammonium utilization ability in rice (Figure 4). It can be said that: if one rice cultivar can preferentially utilize ammonium over nitrate, it will be more Al-resistant, or, if one rice cultivar can preferentially utilize nitrate over ammonium, it will be more Al-sensitive. The two genetic traits of inorganic N utilization and Al resistance in rice often come along with each other.
Conclusion

It can be concluded that: (1) compared with nitrate, ammonium can alleviate Al toxicity or enhance Al resistance of rice; (2) Al does not inhibit ammonium uptake of Al-resistant rice cultivar but does that of Al-sensitive cultivar, and Al-resistant rice cultivar obtains higher ammonium uptake rate under Al stress compared with Al-sensitive cultivar; (3) Al resistance is positively correlated with ammonium utilization. According to these conclusions, we point out that it is possible to enhance Al resistance and N utilization of rice at the same time in acidic soils through the selection of rice cultivars, soil fertilizer management and molecular genetic modification. More experimental evidences of field experiments and molecular biology are needed in future research.

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 40871144, 40921061). We thank Prof. Jian Feng Ma (Okayama University) for generous provision of rice materials.

References

